

PAPER SOLUTION

Aryan Agarwal

Founder and CEO

CVPS INTEGRATED STAR COURSE

From Meerut

JEE
MAIN
2026

JAN	SHIFT
22	2 nd

JEE MAIN 2026 PAPER DISCUSSION

#Q. Find the dimensions of the expression $\frac{\epsilon_0 E}{T}$, where ϵ_0 , E and T are permittivity, electric field and time.

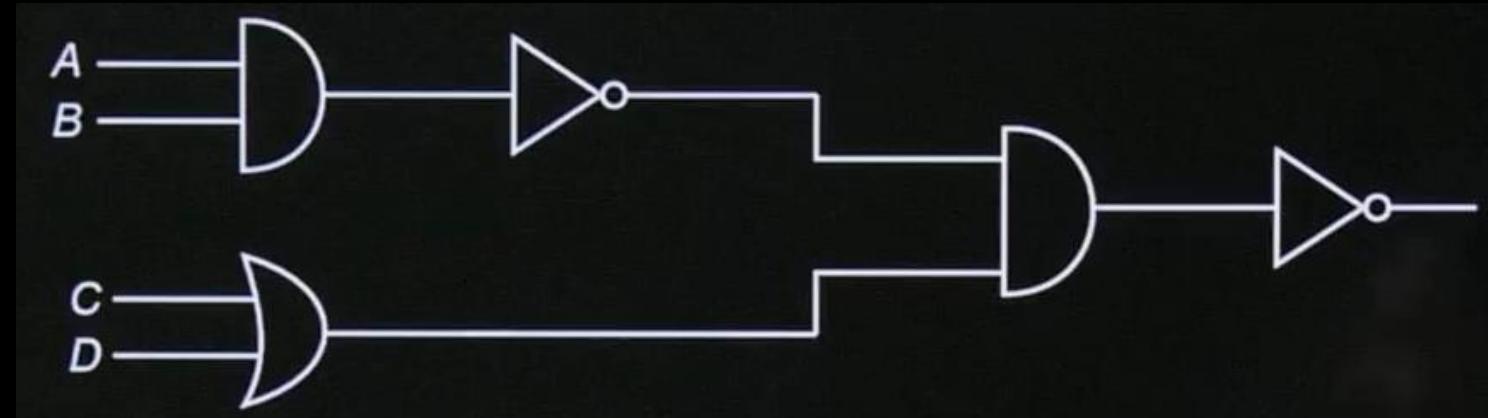
- A** AL
- B** MLA^2
- C** $MA^{-1}L$
- D** AL^{-2}

(Ans : D)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. In an open organ pipe 3rd and 6th harmonic frequency differ by 3200 Hz. Find the length of organ pipe (speed of sound = 320 m/s)

- A** 5 cm
- B** 10 cm
- C** 15 cm
- D** 20 cm


(Ans : C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. For the given logic gate find output function.

- A** $\bar{A} \cdot \bar{B} + C + D$
- B** $\bar{A} + \bar{B} + \bar{C} \cdot \bar{D}$
- C** $AB + CD$
- D** $AB + \bar{C} \cdot \bar{D}$

(Ans : D)

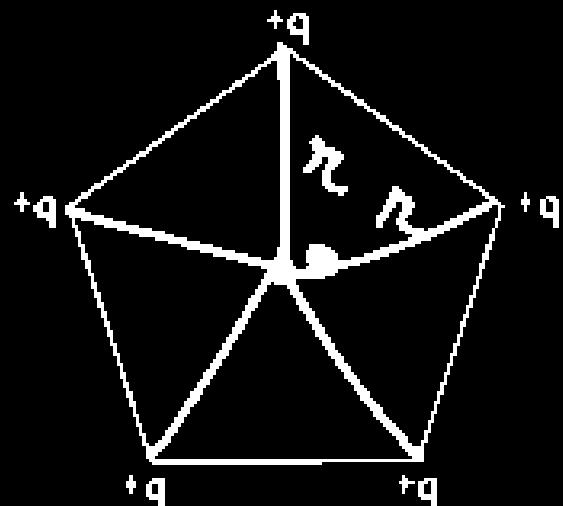
JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. 3 small identical bubbles of water having same charge on each coalesce to form a bigger bubble. Then the ratio of the potentials on one initial bubble & that on the resultant bigger bubble is:

- A** $1 : 3^{2/3}$
- B** $3^{2/3} : 1$
- C** $1 : 2^{2/3}$
- D** $1 : 3^{1/3}$

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

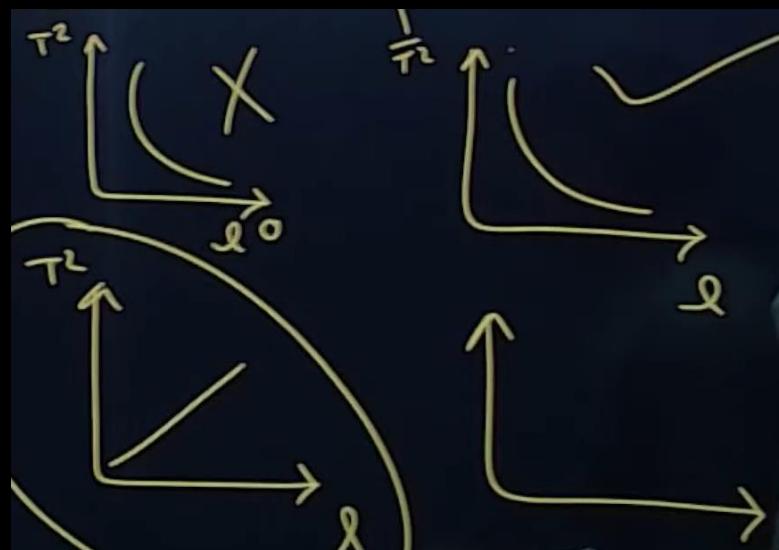

#Q. Five positive charges each having charge q are placed at the vertices of a pentagon as shown in the figure. The electric potential (V) & the electric field (\vec{E}) at the center O of the pentagon due to the 5 positive charges are:-

A $V = 0, E = 0$

B $V = \frac{5q}{4\pi\epsilon_0 r}, E = \frac{5q}{4\pi\epsilon_0 r^2}$

C $V = \frac{5a}{4\pi\epsilon_0 r} \vec{E} = 0$

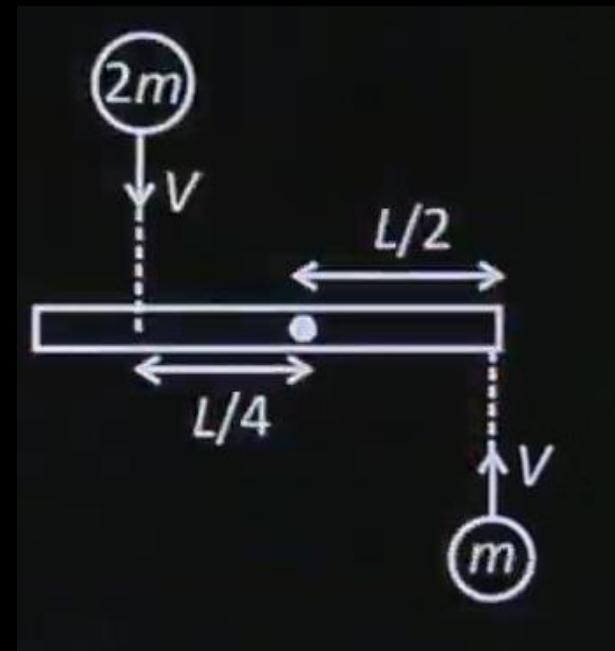
D
$$V = \frac{5q}{4\pi\epsilon_0 r}$$
$$E = \frac{5\sqrt{3}q}{8\pi\epsilon_0 r^2} \hat{r}$$


(Ans : C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Using a simple pendulum experiment g is determined by measuring its time period T . Which of the following plots represent correct relation b/w the pendulum length l & time period T .

(Ans :)



JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Two balls of mass $2m$ and m collides with rod of mass m and length L as shown balls stick tot the rod after collision. Find $\frac{V}{\omega}$ if rod is hinged at centre. ($L = 8m$)

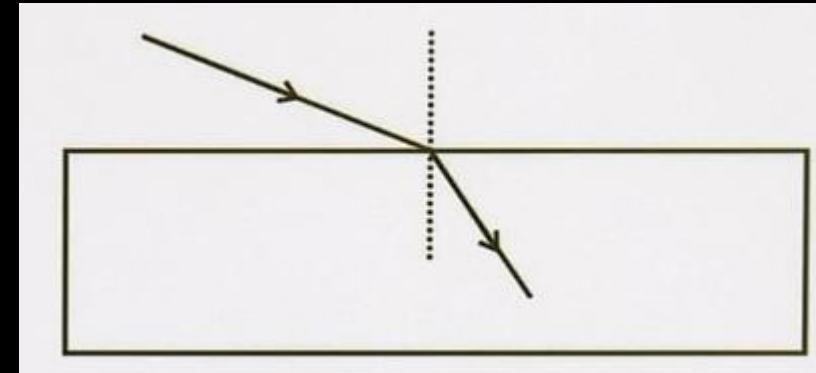
- A** $11/2$
- B** $11/3$
- C** $11/4$
- D** $9/4$

(Ans : B)

JEE MAIN 2026 LIVE PAPER DISCUSSION

#Q. A gas undergoes a process in which state variable changes from (1 atm, 60ml, 27°C) to (P atm, 30 ml, 77°C) then P is:

- A** *3 atm*
- B** *5/4 atm*
- C** *7/3 atm*
- D** *4/3 atm*


(Ans : C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A light ray incident on a slab of refractive index 3/2. If wavelength of refracted ray is 520 nm. Find wavelength of incident ray.

- A** *780 nm*
- B** *560 nm*
- C** *460 nm*
- D** *360 nm*

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Which of the following is/are true for YDSE experiment?

- i. Fringe width increases if slit width is constant & wavelength increased
- ii. Fringe width increases if slit width is constant & wavelength decreased
- iii. Fringe width increases if slit width is increased & wavelength constant
- iv. Fringe width increases if slit width is decreased & wavelength constant.

A

i, iii

B

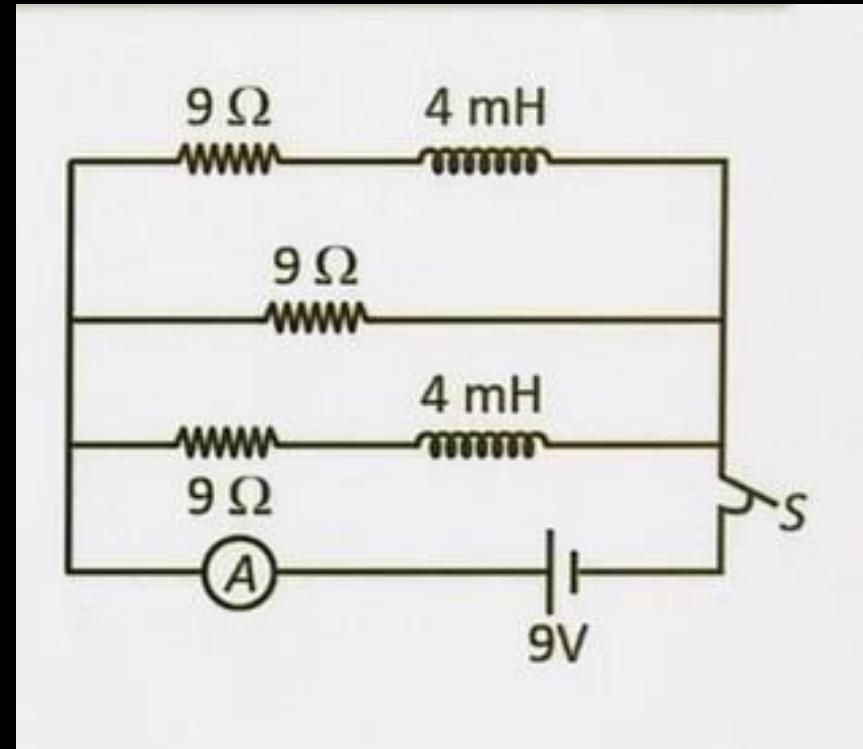
i, iv

C

ii, iii

D

ii, iv


(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. For the given circuit, find reading of ammeter just after key(s) is closed.

- A** 3A
- B** $1/2$ A
- C** 1 A
- D** $3/2$ A

(Ans : C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

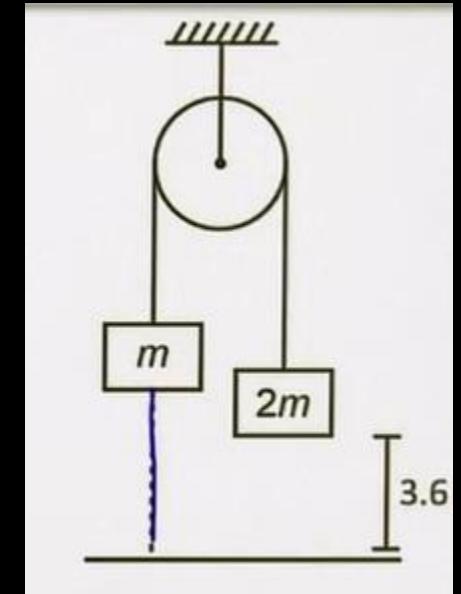
#Q. A laser beam has intensity of $4.0 \times 10^{14} \text{ W/m}^2$. The amplitude of magnetic field associated with. Beam is _____ T.

- A** 1.83
- B** 5.5
- C** 18.3
- D** 2.0

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. The smallest wavelength of Lyman series is λ_0 . The difference between the largest wavelength of Paschen and Balmer series is nearly.


(Ans : NOT)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. If the string connecting m and ground is cut find the speed (approx..) with which $2m$ block hits the ground as shown. ($g = 10 \text{ m/s}^2$)

- A** 4 m/s
- B** $6\sqrt{2} \text{ m/s}$
- C** 3 m/s
- D** $2\sqrt{6} \text{ m/s}$

(Ans : D)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. In hydrogen type atom, shortest wavelength in Lyman series is given as 91 nm. Then longest wavelength in Paschen series of this atom shall be.

- A** 31.82 nm
- B** 1.87 μ m
- C** 113.3 nm
- D** 2.31 μ m

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. **Statement-1:** Kinetic energy of system $= \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 \dots \frac{1}{2}m_nv_n^2$.
Statement-2: Kinetic energy of system = Kinetic energy of center of mass + kinetic energy with respect to center of mass.

- A** Statement I is true Statement II is true
- B** Statement I is true Statement II is false
- C** Statement I is false Statement II is true
- D** Statement I is false Statement II is false

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Find the percentage change in height risen by liquid if density of fluid, radius of capillary and surface tension of liquid are decreased by 1%. Assume contact angle doesn't change and capillary is of sufficient length.

- A** +1%
- B** -1%
- C** +3%
- D** -3%

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A capacitor of capacitance $10 \mu F$ is connected with a battery 6 V. Now battery is disconnected and another uncharged capacitor of capacitance $20 \mu F$ is connected to the capacitor. Find charge on $20 \mu F$ capacitor.

- A** $30/4 \mu C$
- B** $10 \mu C$
- C** $20/3 \mu C$
- D** $40 \mu C$

(Ans : D)